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Nomenclature
aÄ.�; �/ = bilinear form due to strain energy
a 0

Vµ
.�; �/ = variation of aÄ.�; �/ due to orientation change

a 0
VÄ

.�; �/ = variation of aÄ.�; �/ due to shape change
cÄ.�; �/ = bilinear form due to the damping
dÄ.�; �/ = bilinear form due to kinetic energy
e.�; �/ = bilinear mapping
h = thickness of the design component
`Ä.�/ = load linear form
V = design velocity � eld
Vµ = orientation design velocity � eld
VÄ = shape design velocity � eld
y = eigenvector of structure
Z = space of kinematically admissible displacements
z = displacementvector
1Ã = sensitivity coef� cient from central

� nite difference method
³ = eigenvalue of structure
³ 0 = variation of ³ due to design change
³ 0

Vµ
= variation of ³ due to orientation change

³ 0
VÄ

= variation of ³ due to shape change
¸ = adjoint displacement vector
½ = mass density
& = hysteretic damping coef� cient
Ã 0 = continuum design sensitivity coef� cient
! = natural frequency of structure
r = gradient operator

I. Introduction

I F the dimensions or the control points of the CAD geometry
are used as the design variables in a commercial CAD tool on

design, the design engineer can easily obtain the design intent. Re-
cently,many authorshave selecteddesignvariablesfrom the param-
eters of CAD geometry. For example, Hardee et al.1 developed the
CAD-based shape design sensitivity analysis (DSA) of solids using
Pro/ENGINEER. In this Note, CAD-based con� guration DSA for
dynamic systems of plates using Pro/ENGINEER is proposed. For
calculationof design velocity � elds, this Note uses a hybrid method
that contains the CAD-based � nite differencemethod for computa-
tion of boundary design velocity � elds and boundary displacement
methods for computation of domain design velocity � elds.

The shape design variable is consideredin a � xed coordinatesys-
tem of structure; however, the con� guration design variable is used
to design structures with a rotational coordinate. When the con-
tinuum approach was used, Twu and Choi2 and Wang and Choi3

developed a con� guration DSA method for static and eigenvalue
problems and for transient response, respectively. Later, Park and
Choi4 extended the method to nonlinearstructuralsystems for static
problems.The orientationdesign velocity � eld is obtainedusing the
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linearvelocityform. Moreover, this Note proposesCAD-based con-
� guration DSA for dynamic problems of plates, that is, the calcula-
tion of eigenvalueand frequency-responseproblems for structures.

II. Parameterization and Computation
of Design Velocity Field with CAD

In an automated structural design optimization procedure, the
designer must select design variables that specify the design of a
mechanical system. The geometry of the model is parameterizedby
using design variables. Once a new design is obtained by the op-
timization algorithm, CAD geometry and the location of the nodal
points must be changed based on the design parameterization.The
design velocity is calculated at each surface node of the � nite ele-
ment mesh lying on a surface of the CAD model. For the compu-
tation of boundary design velocity, a CAD-based � nite difference
method is used. A CAD-based � nite difference method compares
the before and after of the change of CAD models. Once the bound-
ary velocity has been calculated, an auxiliary elasticity problem is
then solved,by the use of the prescribeddisplacementson the design
boundary velocity to generate the domain design velocity � eld.

For example, the procedure to compute the boundary design
velocity � eld using CAD is shown in Fig. 1. When a simpli� ed
automobileCAD modelwith Beziercurveandsurface is considered,
the boundary curve P.t/ of a cubic Bezier curve and the perturbed
boundary curve are represented by

P.t ; C0; C1; C2; C3/ D C0.1 ¡ t/3 C 3C1t.1 ¡ t/2

C 3C2t
2.1 ¡ t/ C C3t3; 0 · t · 1 (1)

P.t ; C0; C1; C 0
2; C3/ D P

£
t; C0; C1; C2

¡
xC2 ; yC2 C ±yC2 ; zC2

¢
; C3

¤

D C0.1 ¡ t/3 C 3C1t .1 ¡ t/2 C 3C2

¡
xC2 ; yC2

C ±yC2 ; zC2

¢
t 2.1 ¡ t/ C C3t 3; 0 · t · 1 (2)

where C0; C1; C2 , and C3 are control points of Bezier curve
and C 0

2 D C2.xC2 ; yC2 C ±yC2 ; zC2 / is the perturbed point from

a) Original and perturbed model

b) Boundary and domain design velocity � eld

Fig. 1 Computational procedure of design velocity � eld (simpli� ed
automobile).
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C2 . Here ±yC2 is the y-directional perturbation of the control
point C2 .

The design velocity at N , a node on the Bezier boundarycurve, is

V .N / D
[P.t ; C0; C1; C 0

2; C3/ ¡ P.t ; C0; C1; C2; C3/]

±yC2

(3)

The design velocity � eld is automatically calculated in the CAD
tool, Pro/ENGINEER, by using the menu bar, which is programmed
using Pro/TOOLKIT in Pro/ENGINEER.

III. Con� guration Design Sensitivity Analysis
of Eigenvalue Problems

The variationalequation of an eigenvalueproblem can be written
as5

aÄ.y; Ny/ D ³dÄ.y; Ny/ (4)

for all Ny 2 Z , where the eigenvalue³ D !2. The energy bilinear form
aÄ.y; Ny/ and

dÄ.y; Ny/ D
Z Z

Ä

e.y; Ny/ dÄ

are strain and kinetic energy bilinear forms, respectively, and e.�; �/
is a bilinear mapping. Because the eigenvector y is orthonormal
relative to the mass matrix, a normalizing condition must be used
to de� ne the eigenfunctionuniquely. The normalizing condition is

dÄ.y; y/ D 1 (5)

The � rst variation of Eq. (4), for all Ny 2 Z , is

[aÄ.y; Ny/]0 ´ aÄ. Py; Ny/ C aÄ.y; PNy/ C a0
VÄ

.y; Ny/ C a 0
Vµ

.y; Ny/

D
¡
³ 0

VÄ
C ³ 0

Vµ

¢
dÄ.y; Ny/ C ³ [dÄ. Py; Ny/ C dÄ.y; PNy/

C d 0
VÄ

.y; Ny/ C d 0
Vµ

.y; Ny/] ´ ³ 0dÄ.y; Ny/ C ³ [dÄ.y; Ny/]0 (6)

where ³ 0 D ³ 0
VÄ

C ³ 0
Vµ

, a. Py; Ny/ D ³d. Py; Ny/, and a.y; PNy/ D ³d.y; PNy/ for
all PNy 2 Z . Because Eq. (6) holds for all Ny 2 Z , this equation may
be evaluated with Ny D y. When the normalizing condition is used,
Eq. (6) is rewritten as

³ 0 D [aÄ.y; y/]0 ¡ ³ [dÄ.y; y/]0

´ a 0
VÄ

.y; y/ C a 0
Vµ

.y; y/ ¡ ³
£
d 0

VÄ
.y; y/ C d 0

Vµ
.y; y/

¤
(7)

The � rst variation of the bilinear form due to mass effect is

[dÄ.z; Nz/]0 D dÄ.Pz; Nz/ ¡ dÄ

¡
rzT VÄ; Nz

¢
¡ dÄ. QVµ z; Nz/

C dÄ.z; PNz/ ¡ dÄ

¡
z; rNzT VÄ

¢
¡ dÄ.z; QVµ Nz/ C d0

Ä.z; Nz/

D dÄ.Pz; Nz/ C dÄ.z; PNz/ C d 0
VÄ

.z; Nz/ C d 0
Vµ

.z; Nz/ (8)

where

d0
Ä.z; Nz/ D

Z Z

Ä

div[e.z; Nz/VÄ] dÄ

PzVÄ
D z0

VÄ
C rzT VÄ; PzVµ

D z0
Vµ

C QVµ z (9)

When the linear velocity form is used, the orientation design
velocity QVµ does not contain any coupled terms.4 The differentials
d 0

VÄ
.z; Nz/ and d 0

Vµ
.z; Nz/ in Eq. (8) denote the explicit dependence

of kinetic energy form due to the shape and orientation changes
shown as

d 0
VÄ

.z; Nz/ D ¡dÄ

¡
rzT VÄ; Nz

¢
¡ dÄ

¡
z; rNzT VÄ

¢
C d0

Ä.z; Nz/

d 0
Vµ

.z; Nz/ D ¡dÄ. QVµ z; Nz/ ¡ dÄ.z; QVµ Nz/ (10)

Considertheplaneelasticplatedesigncomponent.The bilinearform
due to mass effects is

dÄ.z; Nz/ D
Z Z

Ä

½hzT Nz dÄ D
Z Z

Ä

½h.z1 Nz1 C z2 Nz2 C z3 Nz3/ dÄ

(11)

When Eq. (11) is used, the � rst variations of bilinear form dÄ.z; Nz/
in Eq. (10) become

d 0
VÄ

.z; Nz/ D
Z Z

Ä

[½h.z1 Nz1 C z2 Nz2 C z3 Nz3/] divVÄ dÄ;

d 0
Vµ

.z; Nz/ D 0 (12)

From Eq. (7), the eigenvaluedesign sensitivity expressionof the
plane elastic plate is given as

³ 0 D [aÄ.y; y/]0 ¡ ³ [dÄ.y; y/]0 ´ a0
VÄ

.y; y/

C a 0
Vµ

.y; y/ ¡ ³
£
d 0

VÄ
.y; y/

¤
(13)

where the computationof the � rst variationof strain energy bilinear
form [aÄ.y; y/]0 is similar to static problem2;4 and all terms on the
right-hand side are explicit.

IV. Con� guration DSA of Dynamic
Frequency-Response Problem

The variational equation of a dynamic frequency-responseprob-
lem can be written as

bÄ.z; Nz/ ´ ¡!2½dÄ.z; Nz/ C i!cÄ.z; Nz/ C aÄ.z; Nz/ D `Ä.Nz/ (14)

for all Nz 2 Z , where cÄ.z; Nz/ is the bilinear form due to the damping
and `Ä.Nz/ is the load linear form.

Similarly, in the eigenvalue case, the � rst variation of Eq. (14) is

[bÄ.z; Nz/]0 D bÄ

¡
PzVÄ

; Nz
¢

C bÄ

¡
PzVµ

; Nz
¢

C bÄ

¡
z; PNzVÄ

¢
C bÄ.z; PNzVµ

/

¡ bÄ

¡
rzT VÄ; Nz

¢
¡ bÄ. QVµ z; Nz/ ¡ bÄ

¡
z; rNzT VÄ

¢

¡ bÄ.z; QVµ Nz/ C b0
Ä.z; Nz/ D `0

VÄ
.Nz/ C `0

Vµ
.Nz/ D [`Ä.Nz/]0 (15)

Next, considera general functionalthat may be written in integral
form as

Ã D
Z Z

Ä

g.z; rz/ dÄ (16)

where rz D [rz1rz2rz3]T and the function g is continuouslydif-
ferentiable with respect to its arguments. The variation of the func-
tional of Eq. (16) is

Ã 0 D
Z Z

Ä

£
gz Pz C grzrPz ¡ gz

¡
rzT VÄ C QVµ z

¢

¡ grzr
¡
rzT VÄ C QVµ z

¢
C rgT VÄ C g divVÄ

¤
dÄ (17)

where gr z D [@g=@z1 @g=@z2 @g=@z3] and Pz and rPz depend on the
velocity � eld. The objective here is to obtain an explicit expres-
sion for Ã 0 in terms of the velocity � eld, which requires rewrit-
ing the � rst two terms of the last integral on the right-hand side
of Eq. (17) explicitly in terms of velocity, that is, eliminating Pz. To
eliminate Pz, an adjointequationis introducedby replacing Pz 2 Z by a
virtual displacement Ņ 2 Z and equating the sum of terms involving
Ņ to the bilinear form,5

bÄ.¸; Ņ / D
Z Z

Ä

[gz
Ņ C gr zr Ņ ] dÄ (18)

for all Ņ 2 Z . When the adjoint equation (18) is used, Eq. (17)
becomes

Ã 0 D `0
VÄ

.¸/ C `0
Vµ

.¸/ ¡ b0
VÄ

.z; ¸/ ¡ b0
Vµ

.z; ¸/

¡
Z Z

Ä

£
gz

¡
rzT VÄ

¢
C gz. QVµ z/ C grzr

¡
rzT VÄ

¢

C grzr. QVµ z/
¤

dÄ C
Z Z

Ä

£
rgT VÄ C g divVÄ

¤
dÄ (19)

where ¸ are determined as solutions of the adjoint equation.



AIAA JOURNAL, VOL. 40, NO. 6: TECHNICAL NOTES 1243

Table 1 Sensitivity veri� cation for eigenvalue and vibration (displacement)

Frequency Error
response, .1Ã ¡ Ã 0/=1Ã
Hz Ã Ã 0 1Ã (0.01) £ 100%, %

Eigenvalue
First
bending mode 6:660069EC5 4:587973EC4 4:639000EC4 1.10

Vibration (x-direction displacement at node 552)

126 4:237094E¡3 ¡5:243227E¡3 ¡5:263800E¡3 0.39
127 5:693647E¡3 ¡9:040565E¡3 ¡9:069300E¡3 0.32
128 8:491452E¡3 ¡1:885771E¡2 ¡1:885400E¡2 ¡0.02
129 1:530894E¡2 ¡5:100493E¡2 ¡5:009250E¡2 ¡1.82
130 2:486804E¡2 2:475327E¡2 2:308200E¡2 ¡7.24
131 1:341361E¡2 3:833328E¡2 3:808900E¡2 ¡0.64
132 7:960017E¡3 1:449424E¡2 1:461290E¡2 0.81
133 5:587468E¡3 7:092731E¡3 7:185450E¡3 1.29
134 4:299933E¡3 4:110735E¡3 4:177000E¡3 1.59

a) CAD model and design variable

b) Finite element model of vibration analysis

Fig. 2 Reinforcement model.

Fig. 3 Design velocity � eld of reinforcement model.

For the hysteretic damping case, Eq. (14) can be written as

bÄ.z; Nz/ D ¡!2½dÄ.z; Nz/ C .1 C i&/aÄ.z; Nz/ D `Ä.Nz/ (20)

for all Nz 2 Z . Thus, Eq. (15) is rewritten as

[bÄ.z; Nz/]0 D ¡!2½[dÄ.z; Nz/]0 C .1 C i&/[aÄ.z; Nz/]0

D [`Ä.Nz/]0 (21)

for all Nz 2 Z .

V. Numerical Examples
The geometry with conic surface and � nite element model of a

reinforcement shown in Fig. 2 are created using Pro/ENGINEER.
The � nite element model has 580 shell elements, 12 spring ele-
ments, and 649 nodes. The height of the reinforcement model is
selectedas the con� gurationdesignvariable.The boundaryvelocity
� eld is obtained by using Pro/ENGINEER, and the domain veloc-
ity � eld is calculated using the boundary displacement method in
MSC/NASTRAN as shown in Fig. 3.

For eigenvalue problem, the � rst bending mode of this model
occurs at 129.9 Hz. The design sensitivity coef� cient of the � rst
bending mode with respect to the height as design variable is com-
puted using a continuum DSA program (SENS developed by the
authors).

The boundary conditions and a load for vibration analysis are
shown in Fig. 2. The model is supported by three springs for each
corner node. A force of 100 magnitudes is applied at a center node.
The frequency response at the center of the reinforcement is evalu-
ated between 0 and 200 Hz and has two peaks at 128 and 132 Hz,
indicated by the boldfaced type in Table 1. DSA of frequency re-
sponses from 126 to 134 Hz are carried out with respect to con� g-
uration design variables based on the height of the reinforcement
model. The accuracy of computed sensitivity coef� cients are veri-
� ed using the central � nite difference method (CFDM). In Table 1,
Ã 0 is the continuumdesignsensitivitycoef� cient and 1Ã is the sen-
sitivity coef� cient from CFDM. Table 1 shows that the sensitivity
coef� cients from SENS are accurate.
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VI. Conclusions
A con� guration DSA for dynamic systems with a plate is devel-

oped by using CAD parameters selected from CAD geometry in
a commercial CAD tool. With this system, the designer can easily
obtain con� guration design velocity � elds using Pro/ENGINEER
and Pro/TOOLKIT. The numerical example of a reinforcement
model shows that the proposed con� guration DSA of eigenvalue
and frequency-responseresults of plate are accurate.
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Introduction

S TRUCTURAL optimization has been the subject of numerous
studiesin recentyears.1¡6 Topologicalmodi� cationscangreatly

improve a typical design; however, the solutionsof topologicalopti-
mization problems are dif� cult because of changes in the structural
model. In particular, changes in the number of variables and de-
grees of freedom result in correspondingchanges in the form of the
analysis equation.

One of the main obstacles in topological modi� cation analy-
sis is the high computational effort involved in repeated analysis.
As structural systems to be solved for static and dynamic charac-
teristics become larger, the computing time and the correspond-
ing cost increase drastically. Hence, various techniques have been
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used to reduce the size of the system or the dimensions of the
structural matrices involved in the formulation.7¡12 The reduction
schemesincreasethecalculationef� ciencyat theexpenseof solution
accuracy.

In previous studies, two sets of degrees of freedom (DOF), called
secondary and primary, are introduced in repeated analysis. Dur-
ing the solution, the secondary set is condensed out, whereas the
primary one is retained. When the transformation matrix derived
from the stiffness and mass matrix is used, the system to be solved
is transformed into a reduced subspace represented by the primary
degrees of freedom. An important problem concerns which DOF
should go into the primary set. Improper selection may not only re-
sult in missing some of the lowest modes but also cause dif� culties
in programming because one must redecompose stiffness and mass
matrices according to the selected primary and secondary sets.

Considering that the secondary and primary DOF method is used
commonly in substructures, we intend to introduce this method
into dynamic reanalysis of topological modi� cation. In the present
study, the DOF in the initial system are selected as the primary
set whereas the ones added in the modi� ed system are selected
as the secondary set. When static condensation and Rayleigh quo-
tient are used and the effects of the mass added in the modi� ed
system are considered, several eigenpairs are obtained simultane-
ously. The results show that the proposed method can give high
accuracy.

Problem Formulation
We consider only the case where both the design variables and

the number of DOF are added in the modi� ed system. In this case,
the generalized eigenproblemis as follows:

KV D ¸MV (1)

where

K D K 0
0 C D K 0 (2)

M D M0
0 C D M 0 (3)

K0
0 D

µ
K0 0

0 0

¶
(4)

M0
0 D

µ
M0 0

0 0

¶
(5)

D K0 D
µ
D Knn D Knm

D Kmn D Kmm

¶
(6)

D M 0 D
µ
D Mnn D Mnm

D Mmn D Mmm

¶
(7)

K0 and M0 are the stiffness and mass matricesof the initial structure,
respectively. Subscript n denotes the number of DOF of the initial
structure and m the augmentationof the DOF of the modi� ed struc-
ture. If the DOF in the initial structure are selected as the primary
set and the ones added in the modi� ed structure are selected as the
secondary one, having assembled the change of stiffness and mass
matrices for the added new nodes and members, from Eqs. (1–7), it
can be seen that the stiffness and mass matrices do not have to be
redecomposed.

Proposed Method
Substituting Eqs. (2–7) into Eq. (1) yields

µ
K0 C D Knn D Knm

D Kmn D Kmm

¶³
Vn

Vm

´

D ¸

µ
M0 C D Mnn D Mnm

D Mmn D Mmm

¶³
Vn

Vm

´
(8)


