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Nomenclature

ag(-,) = bilinear form due to strain energy
a(,e (-,») = variationof aq(-, -) due to orientation change
a{,ﬂ (-,+) = variationof aq(-, -) due to shape change
cq(+,») = bilinear form due to the damping
dq(-,-) = bilinear form due to kinetic energy
e(s,-) = bilinear mapping
h = thickness of the design component
Lo(+) = load linear form
Vv = design velocity field
\Z = orientationdesign velocity field
Va = shape design velocity field
y = eigenvector of structure
Zz = space of kinematically admissible displacements
z = displacementvector
Ay = sensitivity coefficient from central

finite difference method
¢ = eigenvalue of structure
¢’ = variation of ¢ due to design change

;",9 = variation of ¢ due to orientation change
variation of ¢ due to shape change
adjoint displacement vector

mass density

hysteretic damping coefficient
continuum design sensitivity coefficient
natural frequency of structure

gradient operator
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I. Introduction

F the dimensions or the control points of the CAD geometry

are used as the design variables in a commercial CAD tool on
design, the design engineer can easily obtain the design intent. Re-
cently, many authorshave selecteddesign variables from the param-
eters of CAD geometry. For example, Hardee et al.! developed the
CAD-based shape design sensitivity analysis (DSA) of solids using
Pro/ENGINEER. In this Note, CAD-based configuration DSA for
dynamic systems of plates using Pro/ENGINEER is proposed. For
calculationof design velocity fields, this Note uses a hybrid method
that contains the CAD-based finite difference method for computa-
tion of boundary design velocity fields and boundary displacement
methods for computation of domain design velocity fields.

The shape design variableis consideredin a fixed coordinate sys-
tem of structure; however, the configuration design variable is used
to design structures with a rotational coordinate. When the con-
tinuum approach was used, Twu and Choi? and Wang and Choi®
developed a configuration DSA method for static and eigenvalue
problems and for transient response, respectively. Later, Park and
Choi* extended the method to nonlinear structuralsystems for static
problems. The orientationdesign velocity field is obtained using the
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linear velocity form. Moreover, this Note proposes CAD-based con-
figuration DSA for dynamic problems of plates, that is, the calcula-
tion of eigenvalue and frequency-responseproblems for structures.

II. Parameterization and Computation
of Design Velocity Field with CAD

In an automated structural design optimization procedure, the
designer must select design variables that specify the design of a
mechanical system. The geometry of the model is parameterized by
using design variables. Once a new design is obtained by the op-
timization algorithm, CAD geometry and the location of the nodal
points must be changed based on the design parameterization. The
design velocity is calculated at each surface node of the finite ele-
ment mesh lying on a surface of the CAD model. For the compu-
tation of boundary design velocity, a CAD-based finite difference
method is used. A CAD-based finite difference method compares
the before and after of the change of CAD models. Once the bound-
ary velocity has been calculated, an auxiliary elasticity problem is
then solved, by the use of the prescribeddisplacementson the design
boundary velocity to generate the domain design velocity field.

For example, the procedure to compute the boundary design
velocity field using CAD is shown in Fig. 1. When a simplified
automobile CAD model with Bezier curve and surfaceis considered,
the boundary curve P () of a cubic Bezier curve and the perturbed
boundary curve are represented by

P(t,Cy, Cy, Cy, C3) = Co(1 — 1)’ +3C1(1 — 1)°
+3C,12(1 — 1) + G483, 0<t<l1 (1
P(t,Cy, Cy, C}, C3) = P[t,Co, Cy, Cs(xcy, Yoy + 8Yes, 23 ), Cs
= Co(1 —1)* +3Cit(1 — 1)* +3Ca(xcy, v,
+6y02,ZC2)t2(1 — 1)+ Cst?, 0<t<l )

where Cy, C, C,, and C; are control points of Bezier curve
and C;=Cs(xc,, Ye, +8Yc,, 2¢,) is the perturbed point from

P(t,G,,C,,Ch05)

P(1,C,,C,CL.C)

a) Original and perturbed model
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b) Boundary and domain design velocity field

Fig. 1 Computational procedure of design velocity field (simplified
automobile).
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C,. Here 8yc, is the y-directional perturbation of the control
point C,.

The design velocity at N, a node on the Bezier boundary curve, is
[P(1,Cy, C,,C], C3) — P(1,Cy, Cy, C5, C3)]

V(N) =
(SyCQ

3

The design velocity field is automatically calculated in the CAD
tool, Pro/ENGINEER, by using the menu bar, which is programmed
using Pro/TOOLKIT in Pro/ENGINEER.

III. Configuration Design Sensitivity Analysis
of Eigenvalue Problems

The variational equation of an eigenvalue problem can be written

as’

ag(y,y) = tda(y,¥) )

forally € Z, where the eigenvalue ¢ = w?. The energy bilinear form

ag(y,y) and
dn(y,ﬁ)=// e(y,y)ds2
Q

are strain and kinetic energy bilinear forms, respectively,and e(-, -)
is a bilinear mapping. Because the eigenvector y is orthonormal
relative to the mass matrix, a normalizing condition must be used
to define the eigenfunctionuniquely. The normalizing condition is

do(y,y) =1 (%)
The first variation of Eq. (4), forally € Z, is
lag(y. )] = ag(y.) + ag(y.y) + a}, (5.5) + a;, (¥, 5)

= (¢}, + ¢}, )da (3. 5) + £[da(3,5) + da(y,5)
+d) (5, 5) +d), 5, 9] = Cda(y,5) + Clda(, )T (6)

where ¢ = ¢/, +¢},, a(3.5) = td(3,5), and a(y, ) = ¢d (y, §) for
all y € Z. Because Eq. (6) holds for all y € Z, this equation may
be evaluated with y =y. When the normalizing condition is used,
Eq. (6) is rewritten as

¢ =laq(y.»] = ¢lda(y, )T
=a, (y.y) +ay,0.y) — ¢[dy 3.y +d, 3.9)] @)
The first variation of the bilinear form due to mass effectis

[do(z.2)] = da(z.2) — do(Vz' Va,Z) — do(Vez, 2)
+da(z,2) — da(z, V7' Vo) — da(. Ve2) + d3 (2. 2)

=do(2.2) + do(z,2) +dy, 2.2) + dy, z.2) ®)

where

dg(z,2)=// divle(z,z) Vo] dS2
Q

ivﬂ = Z/VQ + VZT VQ, ive = Z/Ve + ‘791 (9)

When the linear velocity form is used, the orientation design
velocity Vy does not contain any coupled terms.* The differentials
d (z,z) and d}, (z,z) in Eq. (8) denote the explicit dependence
of kinetic energy form due to the shape and orientation changes
shown as

dy (2.7) = —dg (V2 Vo, Z) — dg(z. V27 Vo) +d3 (2. 2)
dy, (z,7) = —do(Voz,7) — da(z, VeZ) (10)

Considerthe planeelastic plate designcomponent. The bilinearform
due to mass effects is
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dQ(z,Z)Z// ,thTZdQ=// ,0]’1(2121 +2222+Z323)d9
Q Q

an

When Eq. (11) is used, the first variations of bilinear form dq, (z, Z)
in Eq. (10) become

d{/Q(Z,Z)Z // [,01’1(2121 + 2222 + 2323)] divVg dL2,
Q

dy,(z,2)=0 (12)

From Eq. (7), the eigenvalue design sensitivity expression of the
plane elastic plate is given as

¢ =lag(y.y)] — {lde (v, )] = aj, (v.y)
+ay, (v, y) —¢[dy, v.p)] (13)

where the computationof the first variation of strain energy bilinear
form [agq (y, y)]’ is similar to static problem>* and all terms on the
right-hand side are explicit.

IV. Configuration DSA of Dynamic
Frequency-Response Problem

The variational equation of a dynamic frequency-responseprob-
lem can be written as

bo(z,2) = —w’pda(z,2) + iwca(z,2) + ao(z,2) = Lo@) (14)

for all z € Z, where cq(z, Z) is the bilinear form due to the damping
and £ (7) is the load linear form.
Similarly, in the eigenvalue case, the first variation of Eq. (14) is

(b .2 = ba(2ve.2) + bal(2v,.2) + ba (2. 2v,) + ba. Zv,)
—bo(Vz! Vo, 2) — bo(Viz,2) — ba(z, V2T Vy)

—bo(z, Vy2) + bY@ 2) = £, @) + 6, @ = [Le®@]  (15)

Next, considera general functional that may be written in integral

form as
¢=// g(z, Vz)dQ2 (16)
Q

where Vz=[Vz,Vz,Vz;]" and the function g is continuously dif-
ferentiable with respect to its arguments. The variation of the func-
tional of Eq. (16) is

W/ = // [gzz + gVZVz - gz(VzT VQ + ‘N/QZ)
Q

— 9. V(V2! Vo + Vyz) + Vg Vo + g divVe ] de2 a7)

where gy, =[0g/0z; 08/02, dg/dz3] and z and Vz depend on the
velocity field. The objective here is to obtain an explicit expres-
sion for v’ in terms of the velocity field, which requires rewrit-
ing the first two terms of the last integral on the right-hand side
of Eq. (17) explicitly in terms of velocity, that is, eliminating z. To
eliminatez, an adjointequationis introduced by replacingz € Z by a
virtual displacement A € Z and equating the sum of terms involving
X to the bilinear form,’

bo (X, 5\)=//[g15\+gVZV5\]dQ (18)
Q

for all A € Z. When the adjoint equation (18) is used, Eq. (17)
becomes

¥ =, A+ Ly, (N) = b @A) — by, (2, )

- // [2:(V2" Va) + 8. (Vaz) + 9.V (V2" Vy)
Q

+gVZV(\~/9z)]dS2+// [Ve! Vo + g divV, | dQ (19)
Q

where X are determined as solutions of the adjoint equation.
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Table 1 Sensitivity verification for eigenvalue and vibration (displacement)

Frequency Error
response, (AY —y")/AY
Hz v v’ AV (0.01) x 100%, %
Eigenvalue
First
bending mode 6.660069E+5 4.587973E+4 4.639000E +4 1.10
Vibration (x-direction displacement at node 552)
126 4.237094E -3 —5.243227E-3 —5.263800E -3 0.39
127 5.693647E—-3 —9.040565E -3 —9.069300E —3 0.32
128 8.491452E-3 —1.885771E—-2 —1.885400E—2 —0.02
129 1.530894E -2 —5.100493E -2 —5.009250E -2 —1.82
130 2.486804E—2 2.475327E-2 2.308200E -2 —7.24
131 1.341361E-2 3.833328E-2 3.808900F -2 —0.64
132 7.960017E—3 1.449424E -2 1.461290E—2 0.81
133 5.587468E—3 7.092731E-3 7.185450E -3 1.29
134 4.299933E -3 4.110735E-3 4.177000E -3 1.59

Design
Variable

default_Vector :
Max 1.8 &N 221
Min B. @Nd 3

Fig.3 Design velocity field of reinforcement model.

For the hysteretic damping case, Eq. (14) can be written as
bo(z,2) = =’ pda(z,2) + (1 +i5)ag(z,2) = Lo@)  (20)
for all z € Z. Thus, Eq. (15) is rewritten as

[bez,2)] = —&’plda@, 2] + (1 +ig)[ap(z, 2)]
= [la@] (1)

a) CAD model and design variable forallze Z.

V. Numerical Examples

The geometry with conic surface and finite element model of a
reinforcement shown in Fig. 2 are created using Pro/ENGINEER.
The finite element model has 580 shell elements, 12 spring ele-
ments, and 649 nodes. The height of the reinforcement model is
selected as the configuration design variable. The boundary velocity
field is obtained by using Pro/ENGINEER, and the domain veloc-
ity field is calculated using the boundary displacement method in
MSC/NASTRAN as shown in Fig. 3.

For eigenvalue problem, the first bending mode of this model
occurs at 129.9 Hz. The design sensitivity coefficient of the first
bending mode with respect to the height as design variable is com-
puted using a continuum DSA program (SENS developed by the
authors).

The boundary conditions and a load for vibration analysis are
shown in Fig. 2. The model is supported by three springs for each
corner node. A force of 100 magnitudes is applied at a center node.
The frequency response at the center of the reinforcement is evalu-
ated between 0 and 200 Hz and has two peaks at 128 and 132 Hz,
indicated by the boldfaced type in Table 1. DSA of frequency re-
sponses from 126 to 134 Hz are carried out with respect to config-
uration design variables based on the height of the reinforcement

v model. The accuracy of computed sensitivity coefficients are veri-
Z/L(\ fied using the central finite difference method (CFDM). In Table 1,
¥’ is the continuumdesign sensitivity coefficientand A is the sen-
sitivity coefficient from CFDM. Table 1 shows that the sensitivity
Fig.2 Reinforcement model. coefficients from SENS are accurate.

b) Finite element model of vibration analysis
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VI. Conclusions

A configuration DSA for dynamic systems with a plate is devel-
oped by using CAD parameters selected from CAD geometry in
a commercial CAD tool. With this system, the designer can easily
obtain configuration design velocity fields using Pro/ENGINEER
and Pro/TOOLKIT. The numerical example of a reinforcement
model shows that the proposed configuration DSA of eigenvalue
and frequency-responseresults of plate are accurate.
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Introduction

TRUCTURAL optimization has been the subject of numerous

studiesinrecentyears.!' ~® Topologicalmodificationscan greatly
improve a typical design; however, the solutions of topological opti-
mization problems are difficult because of changes in the structural
model. In particular, changes in the number of variables and de-
grees of freedom result in correspondingchanges in the form of the
analysis equation.

One of the main obstacles in topological modification analy-
sis is the high computational effort involved in repeated analysis.
As structural systems to be solved for static and dynamic charac-
teristics become larger, the computing time and the correspond-
ing cost increase drastically. Hence, various techniques have been
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used to reduce the size of the system or the dimensions of the
structural matrices involved in the formulation’~!? The reduction
schemesincreasethe calculationefficiency attheexpenseof solution
accuracy.

In previous studies, two sets of degrees of freedom (DOF), called
secondary and primary, are introduced in repeated analysis. Dur-
ing the solution, the secondary set is condensed out, whereas the
primary one is retained. When the transformation matrix derived
from the stiffness and mass matrix is used, the system to be solved
is transformed into a reduced subspace represented by the primary
degrees of freedom. An important problem concerns which DOF
should go into the primary set. Improper selection may not only re-
sult in missing some of the lowest modes but also cause difficulties
in programming because one must redecompose stiffness and mass
matrices according to the selected primary and secondary sets.

Considering that the secondary and primary DOF method is used
commonly in substructures, we intend to introduce this method
into dynamic reanalysis of topological modification. In the present
study, the DOF in the initial system are selected as the primary
set whereas the ones added in the modified system are selected
as the secondary set. When static condensation and Rayleigh quo-
tient are used and the effects of the mass added in the modified
system are considered, several eigenpairs are obtained simultane-
ously. The results show that the proposed method can give high
accuracy.

Problem Formulation
We consider only the case where both the design variables and
the number of DOF are added in the modified system. In this case,
the generalized eigenproblemis as follows:

KV = MV 1)
where
K =K, + AK' )
M =M, + AM' 3)
K = K, O @)
°~ 10 o0
M = M, O )
°~ 10 o0
AKnn AKIHH
AK = (6)
AKHI n AKHI m
n !, AMnn AMIHH (7)
N AMHI n AMHI m

K, and M, are the stiffness and mass matrices of the initial structure,
respectively. Subscript n denotes the number of DOF of the initial
structure and m the augmentation of the DOF of the modified struc-
ture. If the DOF in the initial structure are selected as the primary
set and the ones added in the modified structure are selected as the
secondary one, having assembled the change of stiffness and mass
matrices for the added new nodes and members, from Egs. (1-7), it
can be seen that the stiffness and mass matrices do not have to be
redecomposed.

Proposed Method
Substituting Egs. (2-7) into Eq. (1) yields

K(J + AKnn AKnm Vn
AKm n AKm m Vm

- M(J + AMnn AMnm Vn (8)
- AM, mn AM mm Vm



